\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
Vậy, x = 1; y = 1; z = 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
Vậy, x = 1; y = 1; z = 3
Tìm các số hữu tỉ dương x,y,z biết : \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)
Tìm các số hữu tỉ dương x,y,z biết : \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)
Tìm các số hữu tỉ dương x,y,z biết:
\(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)
Bài 1: tìm các số nguyên x và y biết rằng:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
bài 2: tìm hai số hữu tỉ x và y sao cho
x-y=x.y=x:y (y khác 0 )
bài 3 : tìm các số hữu tỉ x;y;z biết rằng
x(x+y+z)=-5; y(x+y+z)=9; z(x+y+z)=5
bài 4: người ta viết năm số hữu tỉ trên 1 vòng tròn, trong đó tích hai số cạnh nhau luôn bằng \(\frac{1}{4}\). tìm các số đó
tìm các số hữu tỉ x;y;z biết\(1+\frac{1}{x+\frac{1}{y+\frac{1}{z}}}\)=\(\frac{51}{31}\)
tìm các số hữu tỉ x, y , z
d)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z = -10
e) x (x + y + z) = -12; y (y + z + x ) = 18 ; z(z + x + y ) =30
Tìm các số hữu tỉ x, y, z:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(x-2y+3z=-10\)
Tìm các số hữu tỉ x,y,z biết rằng \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)và \(2y^2-\left(z+5\right)^2=-25\)
Số hữu tỉ \(\frac{43}{30}\)có thể viết dưới dạng 1 + \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}\). Tìm x ;y; z