phân tích đa thức x2 - 3x +2 thành nhân tử đi
Đa thức thương có dạng: \(q\left(X\right)=x^2+cx+d\)
Ta có: \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)
\(=x^4+\left(c-3\right)x^3+\left(d+2-3c\right)x^2+\left(2c-3d\right)x+2d\)
Đồng nhất ta được các hệ số tương ứng bằng nhau:
\(\hept{\begin{cases}c-3=0\\d+2-3c=a\end{cases}}\)
\(\hept{\begin{cases}2c-3d=0\\2d=b\end{cases}}\)
\(\Leftrightarrow a=-5,b=4,c=3,d=2\)
Khi đó: \(q\left(x\right)=x^2+3x+2\)