TH

Tìm các hằng số a, b, c sao cho đa thức f(x) =ax2 + bx + c thoả mãn điều kiện 

f(n+1) – f(n) = n2  với mọi n = 1, 2, … 

AM
9 tháng 2 2022 lúc 12:44

Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...

Giả sử n=1 ta có: 

\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)

Giả sử n=2 ta có: 

\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)

Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\) 

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)

 

Bình luận (0)
DL
9 tháng 2 2022 lúc 13:26

undefined

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
TA
Xem chi tiết
NL
Xem chi tiết
BQ
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
LB
Xem chi tiết
NP
Xem chi tiết