Bài 2: Giới hạn của hàm số

LN

tìm các giới hạn sau:

a, lim\(\frac{2^{5n+1}+3}{3^{5n+2}+1}\)

b, lim\(\frac{\left(-1\right)^n+4.3^n}{\left(-1\right)^{n+1}-2.3^n}\)

c, lim \(\left(1+n^2-\sqrt{n^4+n}\right)\)

d, lim \(\frac{2cosn^2}{n^2+1}\)

e, lim \(\left(\sqrt{n^2-2}-\sqrt[3]{n^3+2n}\right)\)

NL
1 tháng 3 2020 lúc 18:54

\(=lim\frac{2.2^{5n}+3}{9.3^{5n}+1}=lim\frac{2.\left(\frac{2}{3}\right)^{5n}+3\left(\frac{1}{3}\right)^{5n}}{9+\left(\frac{1}{3}\right)^{5n}}=\frac{0}{9}=0\)

\(b=lim\frac{\left(-\frac{1}{3}\right)^n+4}{-1\left(-\frac{1}{3}\right)^n-2}=\frac{4}{-2}=-2\)

\(c=1+lim\frac{-n}{n^2+\sqrt{n^4+n}}=1+lim\frac{-\frac{1}{n}}{1+\sqrt{1+\frac{1}{n^3}}}=1+\frac{0}{2}=1\)

\(-2\le2cosn^2\le2\Rightarrow\frac{-2}{n^2+1}\le\frac{2cosn^2}{n^2+1}\le\frac{2}{n^2+1}\)

\(lim\frac{-2}{n^2+1}=lim\frac{2}{n^2+1}=0\Rightarrow lim\frac{2cosn^2}{n^2+1}=0\)

\(d=lim\left[n\left(\sqrt{1-\frac{2}{n^2}}-1+1-\sqrt[3]{1+\frac{2}{n^2}}\right)\right]\)

\(=lim\left[n\left(\frac{-\frac{2}{n^2}}{\sqrt{1-\frac{2}{n^2}}+1}-\frac{\frac{2}{n^2}}{\sqrt[3]{\left(1+\frac{2}{n^2}\right)^2}+\sqrt[3]{1+\frac{2}{n^2}}+1}\right)\right]\)

\(=lim\left(\frac{-\frac{2}{n}}{\sqrt{1-\frac{2}{n^2}}+1}-\frac{\frac{2}{n}}{\sqrt[3]{\left(1+\frac{2}{n^2}\right)^2}+\sqrt[3]{1+\frac{2}{n^2}}+1}\right)=\frac{0}{2}-\frac{0}{1+1+1}=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LN
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết