Bài 2: Giới hạn của hàm số

NT

1, \(\lim\limits_{x\rightarrow1}\frac{2x^2-3x+1}{x^3-x^2-x+1}\)

2, \(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)

3, \(\lim\limits_{x\rightarrow0}\frac{1-\sqrt[3]{x-1}}{x}\)

4, \(\lim\limits_{x\rightarrow-\infty}\frac{x^2-5x+1}{x^2-2}\)

5, \(\lim\limits_{x\rightarrow+\infty}\frac{2x^2-4}{x^3+3x^2-9}\)

6, \(\lim\limits_{x\rightarrow2^-}\frac{2x-1}{x-2}\)

7, \(\lim\limits_{x\rightarrow3^+}\frac{8+x-x^2}{x-3}\)

8, \(\lim\limits_{x\rightarrow-\infty}\left(8+4x-x^3\right)\)

9, \(\lim\limits_{x\rightarrow-1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}\)

10, \(\lim\limits_{x\rightarrow-\infty}\frac{\left(2x^2+1\right)^2\left(5x+3\right)}{\left(2x^3-1\right)\left(x+1\right)^2}\)

11, \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x}}{x+3}\)

12, \(\lim\limits_{x\rightarrow1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)

13, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}+\sqrt{x+4}-3}{x}\)

14, \(\lim\limits_{x\rightarrow0}\frac{\left(x^2+2020\right)\sqrt{1+3x}-2020}{x}\)

15, \(\lim\limits_{x\rightarrow+\infty}\left(2x-\sqrt{4x^2-3}\right)\)

16, \(\lim\limits_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)

17, \(\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)

18, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2-2x}{8-x^3}\\\frac{x^4-16}{x-2}\end{matrix}\right.\) khi x>2,khi x<2 tại x=2

AH
12 tháng 3 2020 lúc 0:06

Bài 2:

\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)

Bài 3:

\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)

\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)

Bài 4:

\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)

Bài 5:

\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
12 tháng 3 2020 lúc 0:21

Bài 6:

\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)

Bài 7:

\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)

Bài 8:

\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)

Bài 9:

\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)

\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
12 tháng 3 2020 lúc 0:29

Bài 1:

\(\lim\limits_{x\to1+}\frac{2x^2-3x+1}{x^3-x^2-x+1}=\lim\limits_{x\to1+}\frac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=\lim\limits_{x\to1+}\frac{2x-1}{x^2-1}\)

\(\lim\limits_{x\to 1+}\frac{1}{x^2-1}.\lim\limits_{x\to 1+}(2x-1)=1.(+\infty)=+\infty \)

Tương tự \(\lim\limits_{x\to 1-} \frac{2x^2-3x+1}{x^3-x^2-x+1}=-\infty \)

Bình luận (0)
 Khách vãng lai đã xóa
AH
12 tháng 3 2020 lúc 0:36

Bài 10:

\(\lim\limits_{x\to -\infty}\frac{(2x^2+1)^2(5x+3)}{(2x^3-1)(x+1)^2}=\lim\limits_{x\to -\infty}\frac{(\frac{2x^2+1}{x^2})^2.\frac{5x+3}{x}}{\frac{2x^3-1}{x^3}.(\frac{x+1}{x})^2}=\lim\limits_{x\to -\infty}\frac{(2+\frac{1}{x^2})^2(5+\frac{3}{x})}{(2-\frac{1}{x^3})(1+\frac{1}{x})^2}=\frac{2^2.5}{2.1}=10\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
12 tháng 3 2020 lúc 15:26

Nốt nhé hôm qua mình buồn ngủ nên không làm tiếp được

Bài 11:

\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2+2x}}{x+3}=\lim\limits_{x\to -\infty}\frac{\frac{\sqrt{x^2+2x}}{-x}}{\frac{x+3}{-x}}\)\(=\lim\limits_{x\to -\infty}\frac{\sqrt{1+\frac{2}{x}}}{-1+\frac{-3}{x}}=\frac{1}{-1}=-1\)

Bài 12:

\(\lim\limits_{x\to 1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}=\lim\limits_{x\to 1}\frac{(\sqrt{5-x^3}-2)-(\sqrt[3]{x^2+7}-2)}{(x-1)(x+1)}\)

\(=\lim\limits_{x\to 1}\frac{\frac{1-x^3}{\sqrt{5-x^3}+2}-\frac{x^2-1}{\sqrt[3]{(x^2+7)^2}+2\sqrt[3]{x^2+7}+4}}{(x-1)(x+1)}\)

\(=\lim\limits_{x\to 1}\frac{\frac{-(x^2+x+1)}{\sqrt{5-x^3}+2}-\frac{x+1}{\sqrt[3]{(x^2+7)^2}+2\sqrt[3]{x^2+7}+4}}{x+1}=\frac{-11}{24}\)

Bài 13:

\(\lim\limits _{x\to 0}\frac{\sqrt[3]{x+1}+\sqrt{x+4}-3}{x}=\lim\limits _{x\to 0}\frac{(\sqrt[3]{x+1}-1)+(\sqrt{x+4}-2)}{x}=\lim\limits _{x\to 0}\frac{\frac{x}{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}+\frac{x}{\sqrt{x+4}+2}}{x}\)

\(\lim\limits _{x\to 0}[\frac{1}{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}+\frac{1}{\sqrt{x+4}+2}]=\frac{7}{12}\)

Bài 14:

\(\lim\limits_{x\to 0}\frac{(x^2+2020)\sqrt{1+3x}-2020}{x}=\lim\limits_{x\to 0}\frac{x^2\sqrt{1+3x}+2020(\sqrt{1+3x}-1)}{x}\)

\(\lim\limits_{x\to 0}x\sqrt{1+3x}+2020\lim\limits_{x\to 0}\frac{3x}{(\sqrt{1+3x}+1)x}=\lim\limits_{x\to 0}x\sqrt{1+3x}+2020\lim\limits_{x\to 0}\frac{3}{\sqrt{1+3x}+1}\)

\(=0+2020.\frac{3}{2}=3030\)

Bài 15:

\(\lim\limits_{x\to +\infty}(2x-\sqrt{4x^2-3})=\lim\limits_{x\to +\infty}\frac{4x^2-(4x^2-3)}{2x+\sqrt{4x^2-3}}=\lim\limits_{x\to +\infty}\frac{3}{2x+\sqrt{4x^2-3}}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
12 tháng 3 2020 lúc 16:04

Bài 16:

\(\lim\limits _{x\to a}\frac{x^2-(a+1)x+a}{x^3-a^3}=\lim\limits _{x\to a}\frac{(x-1)(x-a)}{(x^2+xa+a^2)(x-a)}=\lim\limits _{x\to a}\frac{x-1}{x^2+xa+a^2}\)

Nếu $a=0$ thì \(=\lim\limits _{x\to 0}\frac{x-1}{x^2}=\lim\limits _{x\to 0}\frac{1}{x^2}.\lim\limits _{x\to 0}(x-1)=+\infty (-1)=-\infty \)

Nếu $a\neq 0$ thì \(\lim\limits _{x\to a}\frac{x-1}{x^2+xa+a^2}=\frac{a-1}{3a^2}\)

Bài 17: Áp dụng công thức L'Hospital

\(\lim\limits _{x\to 1}\frac{x^n-nx+n-1}{(x-1)^2}=\lim\limits _{x\to 1}\frac{dx(x^n-nx+n-1)}{dx((x-1)^2}=\lim\limits _{x\to 1}\frac{nx^{n-1}-n}{2x-2}\)

\(=\lim\limits _{x\to 1}\frac{dx(nx^{n-1}-n)}{dx(2x-2)}=\lim\limits _{x\to 1}\frac{n(n-1)x^{n-2}}{2}=\frac{n(n-1)}{2}\)

Bài 18:

Bình luận (0)
 Khách vãng lai đã xóa
AH
12 tháng 3 2020 lúc 16:08

Bài 18:

\(\lim\limits _{x\to 2+}f(x)=\lim\limits _{x\to 2+}\frac{x^2-2x}{8-x^3}=\lim\limits _{x\to 2+}\frac{x(x-2)}{(2-x)(4+2x+x^2)}=\lim\limits _{x\to 2+}\frac{-x}{x^2+2x+4}=\frac{-1}{6}\)

\(\lim\limits _{x\to 2-}f(x)=\lim\limits _{x\to 2-}\frac{x^4-16}{x-2}=\lim\limits _{x\to 2-}\frac{(x^2-4)(x^2+4)}{x-2}=\lim\limits _{x\to 2-}(x+2)(x^2+4)=32\)

Ta thấy \(\lim\limits _{x\to 2+}f(x)\neq \lim\limits _{x\to 2-}f(x)\) nên không tồn tại giới hạn $f(x)$ tại $x=2$

Bình luận (0)
 Khách vãng lai đã xóa
AH
11 tháng 3 2020 lúc 9:59

Bài 1:

\(\lim\limits_{x\to1}\frac{2x^2-3x+1}{x^3-x^2-x+1}=\lim\limits_{x\to1}\frac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{2x-1}{\left(x+1\right)\left(x-1\right)}\)

\(=\lim\limits_{x\to 1}\frac{2(x-1)+1}{(x-1)(x+1)}=\lim\limits_{x\to 1}\frac{2}{x+1}+\lim\limits_{x\to 1}\frac{1}{x^2-1}\)

Có: \(\lim\limits_{x\to 1+} \frac{2x^2-3x+1}{x^3-x^2-x+1}=+\infty \)

\(\lim\limits_{x\to 1-} \frac{2x^2-3x+1}{x^3-x^2-x+1}=-\infty \)

Bình luận (0)
 Khách vãng lai đã xóa
NT
11 tháng 3 2020 lúc 18:44

j

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết
JP
Xem chi tiết
TT
Xem chi tiết
HH
Xem chi tiết