KG

Tìm các giá trị \(x,y\) nguyên dương sao cho: \(x^2=y^2+2y+13\)

H24
9 tháng 8 2023 lúc 12:42

\(x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)

Do \(x,y\in N\)* nên \(x-y-1;x+y+1\inƯ\left(12\right)\) và \(x+y+1\ge1+1+1=3\)

TH1: \(x+y+1=12\Rightarrow x-y-1=1\)

\(\Leftrightarrow x=\dfrac{13}{2};y=\dfrac{9}{2}\) (ktm)

TH2:\(x+y+1=6;x-y-1=2\)

\(\Leftrightarrow x=4;y=1\) (thỏa mãn)

TH3: \(x+y+1=4;x-y-1=3\)

\(\Leftrightarrow x=\dfrac{7}{2};y=-\dfrac{1}{2}\) (ktm)

TH4: \(x+y+1=3;x-y-1=4\) (ktm)

Vậy \(x=4;y=1\)

Bình luận (0)
NT
9 tháng 8 2023 lúc 13:10

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=y^2+2y+1+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)

Vi x;y nguyên dương

\(\Rightarrow\left(x-y-1\right);\left(x+y+1\right)\in B\left(12\right)=\left\{1;2;3;4;6;12\right\}\left(x-y-1< x+y+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+1\in\left\{12;6;4\right\}\\x-y-1\in\left\{1;2;3\right\}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{\dfrac{13}{2};4;\dfrac{7}{2}\right\}\\y\in\left\{\dfrac{9}{2};1;-\dfrac{1}{2}\right\}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\) (x;y nguyên dương)

Vậy \(\left(x;y\right)\in\left(4;1\right)\) thỏa mãn đề bài

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
NH
Xem chi tiết
VH
Xem chi tiết
VK
Xem chi tiết
TB
Xem chi tiết
HK
Xem chi tiết
NN
Xem chi tiết
NK
Xem chi tiết
PT
Xem chi tiết