Tìm các giá trị nguyên của n để hai biểu thức A và biểu thức B đồng thời chia hết cho biểu thức C :
a, A = 5x^2 y^3n+1, B = -2x^3n y^5 và C = x^n y^4
b, A = 18x^2n y^12-3n z^2, B = 3^2 x^3 y^7 và C = 3x^3 y^4
Giúp mình với ạ mình đang cần rất gấp
Bài 1 : Tìm các giá trị nguyên của n để hai biểu thức A và biểu thức B đồng thời chia hết cho biểu thức C :
a, A = x^6 y^2n-6 , B = 2x^3n y^18-2n và C = x^2 y^4
b, A = 20x^n y^2n+3 z^2 , B = 21x^6 y^3-n t và C = 22x^n-1 y^2
Giúp mình với ạ mình đang cần gấp
Tìm các giá trị nguyên của n để hai biểu thức A và B đồng thời chia hết cho biểu thức C: a, A= x^3.y^3n-1, B=x^3n.y^7-2n và C= 6x^n.y^4
b, A=x^2n.y^6-3n.z^2, B=x^3.y^3-2n
C=x^3.y^4
Bài 2 : Tìm các giá trị nguyên của n để hai biểu thức A và biểu thức B đồng thời chia hết cho biểu thức C biết :
a, A = x^6 y^2n-6 , B = 2x^3n y^18-2n và C = x^2 y^4
b, B = 20x^n y^2n+3 z^2 , B = 21x^6 y^3-n t và C = 22x^n-1 y^2
Giúp mình với ạ mình đang cần gấp
Bài 1: Cho a,b là các số dương thỏa mãn \(a^9+b^9=a^{10}+b^{10}=a^{11}+b^{11}.\)Tính giá trị của biểu thức \(P=a^{2018}+b^{2018}+2018\)
Bài 2:a, Tìm GTLN của biểu thức : \(A=5+2xy+14y-x^2-5y^2-2x\)
b, Tìm tất cả số nguyên dương n sao cho \(B=2^n+3^n+4^n\)là số chính phương.
Bài 3: Cho x,y là 2 số thực thỏa mãn :\(x^2+y^2-4x+3=0\). Tìm giá trị lớn nhất, nhỏ nhất của M=\(x^2+y^2\)
Bài 4; Cho \(A=3x^3-2x^2+ax-a-5\)và \(B=x-2\). Tìm a để \(A⋮B\)
Bài 5: Cho x,y,z là các số thực khác 0 thỏa mãn x+y+z=3 và \(x^2+y^2+z^2=9\). Tính giá trị của biểu thức \(P=\left(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}-4\right)^{2019}\)
Bài 1: Rút gọn biểu thức
a) \(5^{n+1}-2.5^5\)
b) \(2x^{n-1}.\left(x^{n+1}-y^{n+1}\right)+y^{n+1}.\left(2x^{n-1}-y^{n-1}\right)\)
Bài 2: Chứng minh rằng
a) \(8^5+16^4\)chia hết cho 3
b) \(2^8+2^9+2^{10}\)chia hết cho 7
Bài 3: Tính giá trị biểu thức:
\(x^8-2005.x^7+2005.x^6-2005.x^5....-2005.x+2005vớix=2004\)
Bài 4: Tính giá trị biểu thức
\(A=\frac{1}{3589}.7\frac{1}{297}-3\frac{3588}{3589}.\frac{2}{297}-\frac{7}{3589}-\frac{3}{3589.297}\)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1: CM đẳng thức sau:
(x^2-xy+y^2)(x+y)=x^3+y^3.
Bài 2: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến :
(x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+1)-4x(x-1).
Bài 3: Tìm x biết :
(3x-1)(2x+7)-(x+1)(6x-5)=16.
Bài 4: CM rằng với mọi n thuộc Z thì:
n(n+5)-(n-3)(n+2) chia hết cho 6.
Bài 5: CM rằng với mọi số nguyên a giá trị của biểu thức:
a(a-1)-(a+3)(a+2) chia hết cho 6.
Bài 6: Tính giá trị của biểu thức sau bằng cách hợp lí:
A=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99.
1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42