Để biểu thức \(\frac{7}{x^2-x+1}\)nguyên thì \(x^2-x+1\)phải là ước của 7
<=> \(x^2-x+1\)\(\in\){\(\pm1\); \(\pm7\)}
TH1: \(x^2-x+1=1\)
<=>\(x^2-x=0\)
<=>\(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
TH2:\(x^2-x+1=-1\)
<=>\(x^2-x+2=0\)(Vô nghiệm)
TH3:\(x^2-x+1=7\)
<=>\(x^2-x-6=0\)
<=>\(\left(x-3\right)\left(x+2\right)=0\)
<=>\(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
TH4: \(x^2-x+1=-7\)
<=>\(x^2-x+8=0\)(Vô nghiệm)
Vậy các giá trị nguyên của biểu thức \(\frac{7}{x^2-x+1}\)là 1 và 7 khi và chỉ khi \(x\in\){-2;0;1;3}