Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

tim cac chu so tan cung

421

953

3103

84n+1(n thuộc N)

1423+2323+7023

H24
12 tháng 9 2019 lúc 11:52

                                                                   Bài giải

\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)

Vậy chữ số tận cùng của \(4^{21}\) là 4

\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy chữ số tận cùng của \(9^{53}\) là 9

\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của \(3^{103}\) là 3

Bình luận (0)
H24
12 tháng 9 2019 lúc 13:09

                                                                   Bài giải

\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)

Vậy chữ số tận cùng của \(4^{21}\) là 4

\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy chữ số tận cùng của \(9^{53}\) là 9

\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của \(3^{103}\) là 3

\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)

Vậy chữ số tận cùng của \(8^{4n+1}\) là 8

\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)

\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)

\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)

\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)

\(=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của tổng trên là 3

Bình luận (0)
Me
12 tháng 9 2019 lúc 13:09

                                                                           Bài giải

\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)

Vậy chữ số tận cùng của \(8^{4n+1}\) là 8

\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)

\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)

\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)

\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)

\(=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của tổng trên là 3

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
DA
Xem chi tiết
HN
Xem chi tiết
BK
Xem chi tiết
TH
Xem chi tiết
TY
Xem chi tiết
ND
Xem chi tiết