NU

Tìm các chữ số a; b; c khác 0 thỏa mãn: \(\overline{abbc}=\overline{ab}\times\overline{ac}\times7\)

HH
4 tháng 4 2018 lúc 12:06

Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)

\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)

\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)

\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)

Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)

\(\Leftrightarrow5b=45\Leftrightarrow b=9\)

Vậy \(a=1,b=9,c=5\)

Bình luận (0)
AK
1 tháng 4 2018 lúc 19:45

Bấm vào câu hỏi tương tự đi bạn . 

Anh Lê Mạnh Tiến Đạt giải rồi đấy 

Bình luận (0)

Có abbc < 10.000  ⇒ ab.ac.7 < 10000  ⇒ ab.ac < 1429  ⇒ a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)  ⇒ a0 < 38  ⇒ a ⇐ 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc ⇒ loại 
+)Với a = 2 ta có :
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc ⇒ loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)  ⇒ a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)  ⇒ 1c.7 < 110⇒ 1c < 16 ⇒ c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 ⇒ 1bb5 = 1b.105  ⇔ 100.1b + b5 = 1b.105b  ⇔ b5 = 5.1b  ⇔ 10b + 5 = 5.(10+b)  ⇒ b = 9  ⇒a = 1;b = 9;c = 5

Bình luận (0)

Có abbc < 10.000  ⇒ ab.ac.7 < 10000  ⇒ ab.ac < 1429  ⇒ a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)  ⇒ a0 < 38  ⇒ a ⇐ 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc ⇒ loại 
+)Với a = 2 ta có :
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc ⇒ loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)  ⇒ a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)  ⇒ 1c.7 < 110⇒ 1c < 16 ⇒ c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 ⇒ 1bb5 = 1b.105  ⇔ 100.1b + b5 = 1b.105b  ⇔ b5 = 5.1b  ⇔ 10b + 5 = 5.(10+b)  ⇒ b = 9  ⇒a = 1;b = 9;c = 5

Bình luận (0)

Có abbc < 10.000  ⇒ ab.ac.7 < 10000  ⇒ ab.ac < 1429  ⇒ a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)  ⇒ a0 < 38  ⇒ a ⇐ 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc ⇒ loại 
+)Với a = 2 ta có :
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc ⇒ loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)  ⇒ a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)  ⇒ 1c.7 < 110⇒ 1c < 16 ⇒ c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 ⇒ 1bb5 = 1b.105  ⇔ 100.1b + b5 = 1b.105b  ⇔ b5 = 5.1b  ⇔ 10b + 5 = 5.(10+b)  ⇒ b = 9  ⇒a = 1;b = 9;c = 5

Bình luận (0)
LG
1 tháng 4 2018 lúc 20:48

  Có abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
=> a <= 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
vậy số abc là 195

Bình luận (0)
NU
1 tháng 4 2018 lúc 21:17

copy hết vs nhau! ko làm đc thì biến

Bình luận (0)