NN

tìm các cặp  x,y thuộc N biết

a :15x+20y=2001

b :2x2+3y2=62

 

AH
7 tháng 9 2024 lúc 17:42

Lời giải:

a. Với $x,y$ là số tự nhiên thì $15x+20y=5(3x+4y)\vdots 5$. Mà $2001\not\vdots 5$ nên $15x+20y\neq 2001$
Vậy không tồn tại $x,y$ tự nhiên thỏa mãn điều kiện đề.

b.

$3y^2=62-2x^2\vdots 2\Rightarrow y\vdots 2$. 

$\Rightarrow y=2y_1$ với $y_1\in\mathbb{N}$

Khi đó:

$2x^2+3(2y_1)^2=62$

$\Rightarrow x^2+6y_1^2=31$

$\Rightarrow 6y_1^2=31-x^2\leq 31$

$\Rightarrow y_1^2\leq \frac{31}{6}< 9$

$\Rightarrow -3< y_1< 3$

Mà $y_1$ là số tự nhiên nên $y_1$ có thể nhận các giá trị $0,1,2$

Nếu $y_1=0$ thì $x^2=31-6.0^2=31$ (loại do 31 không phải scp) 

Nếu $y_1=1$ thì $x^2=31-6.1^2=25\Rightarrow x=5$

$\Rightarrow (x,y)=(5,2)$

Nếu $y_1=2$ thì $x_2^2=31-6.2^2=7$ (loại do 7 không phải scp)

Vậy........

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
SH
Xem chi tiết
DQ
Xem chi tiết
SH
Xem chi tiết
DQ
Xem chi tiết
SH
Xem chi tiết
VL
Xem chi tiết
KS
Xem chi tiết
NH
Xem chi tiết