YY

Tìm các cặp x,y thỏa mãn: \(\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)

TT
7 tháng 10 2017 lúc 12:25

áp dụng bdt amgm ta có

\(\sqrt{x}+\frac{1}{\sqrt{x}}\)+\(4\sqrt{y}+\frac{1}{\sqrt{y}}\) \(\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}\) =6

dau = xay ra khi \(\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

kl (x;y ) =(1;1/4)

Bình luận (0)
DH
7 tháng 10 2017 lúc 12:31

ĐKXĐ: \(x;y>0\)

\(\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)

Á dụng bđt Cauchy ta có :

 \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)

\(4\sqrt{y}+\frac{1}{\sqrt{y}}\ge2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}=4\)

\(\Rightarrow\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge6\) Hay \(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
TQ
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
ST
Xem chi tiết
VD
Xem chi tiết
KK
Xem chi tiết
DN
Xem chi tiết
HV
Xem chi tiết