TA

Tìm các cặp số thực (x;y) thỏa mãn cái điều kiện: 

\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\\3xy=x+y+1\end{cases}}\)

PC
3 tháng 10 2018 lúc 20:29

Ta có: 3xy=x+y+1

\(\Leftrightarrow4xy=xy+x+y+1\)

\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\) 

Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)

\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)

Bình luận (0)
TA
5 tháng 10 2018 lúc 19:09

giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc

Bình luận (0)

Các câu hỏi tương tự
ZN
Xem chi tiết
VD
Xem chi tiết
TB
Xem chi tiết
HP
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DG
Xem chi tiết
TN
Xem chi tiết