Câu hỏi của https://olm.vn/thanhvien/kudoshinichi2k4
Ở đây nha :https://olm.vn/hoi-dap/detail/101095140158.html
Câu hỏi của https://olm.vn/thanhvien/kudoshinichi2k4
Ở đây nha :https://olm.vn/hoi-dap/detail/101095140158.html
Tìm các cặp số nguyên x, y thỏa mãn điều kiện x(x-2)-(2-x).y-2.(x-2) =3
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn : x^3-x^2y+2x-y=2
Tìm các cặp số nguyên x , y thỏa mãn phương trình: x^3 = y^3 - 2y^2 + 3y - 1
Tìm các cặp số nguyên x y thỏa mãn \(x^2+5y^2+2y-4xy-3=0\)
Tìm các cặp số nguyên (x,y) thỏa mãn \(^{x^2+x+3=y^2}\)
tìm các cặp số (x,y) nguyên thỏa mãn 9x^2 + 6x=y^3
Tìm cặp số nguyên (x, y) thỏa mãn : |x+3|+|x-1|=3-y^2-2y
Tìm tất cả các cặp số (x; y) với x; y là các số nguyên thỏa mãn y3 - 2 = x (x2 + 2x +3).
GIÚP MÌNH VỚI!
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)