Đề đúng : Tìm các cặp số nguyên tố (m,n) sao cho \(m^2-2n^2-1=0\)
Ta có ; \(m^2-2n^2-1=0\Leftrightarrow m^2-1=2n^2\Leftrightarrow\left(m-1\right)\left(m+1\right)=2n^2\)
Cần chú ý : vì \(m,n\ge2>0\)nên m + 1 > m - 1
Vì m,n là các số nguyên tố nên chỉ có các trường hợp :
\(\hept{\begin{cases}m-1=1\\m+1=2n^2\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\n=\sqrt{\frac{3}{2}}\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}m=2\\n=-\sqrt{\frac{3}{2}}\end{cases}}\)(loại)\(\hept{\begin{cases}m+1=2n\\m-1=n\end{cases}\Leftrightarrow}\hept{\begin{cases}m=3\\n=2\end{cases}}\)(nhận)\(\hept{\begin{cases}m+1=n^2\\m-1=2\end{cases}\Leftrightarrow}\hept{\begin{cases}m=3\\n=\pm2\end{cases}}\)(nhận n = 2 , loại n = -2)Vậy : (m,n) = (3;2)
Đúng 1
Bình luận (0)