\(\Rightarrow6\left(b+3\right)+17⋮b+3\\ \Rightarrow b+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\\ \Rightarrow b\in\left\{-21;-4;-2;14\right\}\)
\(6b+35⋮b+3\\ \Rightarrow6b+35⋮6b+18\\ \Rightarrow\left(6b+35\right)-\left(6b+18\right)⋮b+3\\ \Rightarrow17⋮b+3\\ \Rightarrow b+3\inƯ\left(17\right)=\left\{\pm17;\pm1\right\}\)
\(b+3\) | \(17\) | \(1\) | \(-1\) | \(-17\) |
\(b\) | \(14\) | \(-2\) | \(-4\) | \(-20\) |