NC

tìm bốn số tự nhiên liên tiếp sao cho lập phương của một số bằng tổng các lập phương của ba số kia

DT
13 tháng 9 2015 lúc 10:13

Gọi 4 số tự nhiên liên tiếp đó là: n-1;n;n+1;n+2 (n>0)

theo đề lập phương của một số bằng tổng các lập phương của 3 số kia

=>số mà lập phương lên bằng tổng các lập phương của 3 số kia phải lớn nhất

=>số đó là n+2

Ta có phương trình: 

(n+2)3=n3+(n-1)3+(n+1)3

<=>n3+6n2+12n+8=n3+n3-3n2+3n-1+n3+3n2+3n+1

<=>n3+6n2+12n+8=3n3+6n

<=>3n3-n3-6n2+6n-12n-8=0

<=>2n3-6n2-6n-8=0

<=>2n3-8n2+2n2-8n+2n-8=0

<=>2n2.(n-4)+2n.(n-4)+2.(n-4)=0

<=>2.(n-4)(n2+n+1)=0

Vì n2+n+1\(\ge\)0 với mọi x nên:

n-4=0

<=>n=4

Vậy 4 số cần tìm là: 3;4;5;6

Bình luận (0)