Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm a,b,c biết :
\(a\left(x+2\right)^2+b\left(x+3\right)^2=cx+5\) (với mọi x thuộc R )
a) Xác định a,b,c,d để đa thức\(f\left(x\right)=ax^4+bx^3+cx^2+dx+c\) thoả mãn điều kiện \(f\left(x\right)-f\left(x-1\right)=x^3\) với mọi x và f(0) = 0
Help me, will you?
1. Cho a, b, c là các số thực dương. Tìm GTLN của biểu thức \(P=\frac{a^2b+b^2c+c^2a}{a^2+b^2+c^2}-\frac{1}{3}\left(a^2+b^2+c^2\right)\)
2. Cho đa thức \(P\left(x\right)=ax^2+bx+c\) \(\left(a,b,c\in R\right).\) Biết \(P\left(x\right)>0\) với mọi x thuộc R.
Chứng minh rằng \(\frac{5a+b+3c}{a-b+c}>1\)
3. Cho p là một số nguyên tố. Tìm tất cả các số nguyên n để \(A=n^4+4n^{p+1}\) là một số chính phương.
1.Cho a,b,c là các số nguyên dương thỏa mãn (a5+b)(b5+a)=2c. Tìm a,b,c
2. Cho \(sigma\left(\frac{x}{y+z}\right)=1\)Tính A=\(sigma\left(\frac{x^2+y^2-z^2}{y+z}\right)\)
3.Cho a,b,c (thuộc R) và a2+b2+c2=3 CMR \(sigma\left(a^3\left(b+c\right)\right)\le6\)
a) Cho \(x=\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\) .Tính GTBT: \(A=\frac{4\left(x+1\right)^{2017}-2x^{2016}+2x+1}{2x^2+3x}\)
b) Cho đa thức: \(f\left(x\right)=ãx^2+bx+c\).Biết f(x)>0 với mọi x thuộc R và a>0. Chứng minh rằng: \(\frac{5a-3b+2}{a-b+c}>1\)
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
tìm a,b,c biết :
\(\frac{21x^2+4x-41}{\left(x+1\right)\left(x+2\right)\left(x-3\right)}=\frac{a}{x+1}+\frac{b}{x+2}+\frac{c}{x-3}\)
Cho a b c thuộc R và a b c khác 1. CMR \(\left(\frac{x}{x-1}\right)^2+\left(\frac{y}{y-1}\right)^2+\left(\frac{z}{z-1}\right)^2\ge1\)