Cho \(\left(a+b\right)^3+4ab\ge2.\)Tìm min \(A=3\left(a^4+b^4+a^2b^2\right)-2\left(a^2+b^2\right)+1\)
Cho 2 số thực dương a,b thỏa mãn \(0< a,b\le1\) và \(a+b=4ab\).Tìm giá trị nhỏ nhất của biểu thức \(P=a^2b+ab^2-\frac{a^2+b^2}{6a^2b^2}\)
1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
caua1:Tìm các số nguyên dương a,b sao cho a+b^2 chia hết cho a^2b-1
câu 2:CMR: \(\frac{19b^3-a^3}{ab+5b^2}+\frac{19c^3-b^3}{bc+5c^3}+\frac{19a^3-c^3}{ca+5a^2}\le3\left(a+b+c\right)\)
Giúp mk với
1 . Cho a,b,c là các số thực dương. Chứng minh
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{1}{4}\left(a+b+c\right)\)
2 .
Cho a,b là hai số thực dương thỏa mãn: a+b≤1
Tìm giá trị nhỏ nhất của : \(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab\)
tìm tất cả các số nguyên dương lẻ n sao cho +1 chia hết cho n
Cho n là số nguyên dương. Chứng minh rằng:
\(A=2^{3n-1}+2^{3n+1}+1 \) chia hết cho 7
tìm tất cả các số nguyên dương a,b sao cho a+b2 chia hết cho a2b-1
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)