MG

Tìm a để đa thức 

a2x3 + 3ax2 - 6x - 2a chia hết cho x+1

H24
30 tháng 10 2019 lúc 10:15

Gọi f( x ) = a2x3 + 3ax2 - 6x - 2a

       g( x ) =  x + 1

 Cho g( x ) = 0

\(\Rightarrow\)x + 1 = 0

\(\Rightarrow\)x        = - 1

\(\Leftrightarrow\)f( - 1 ) = a2( - 1 )3 + 3a( - 1 )2 - 6( - 1 ) - 2a

\(\Leftrightarrow\)f( - 1 ) = - a2 + 3a + 6 - 2a

Để f( x ) \(⋮\)g( x )

\(\Leftrightarrow\)- a2 + 3a + 6 - 2a = 0

\(\Rightarrow\)- ( 2a - 6 ) - ( a2 - 3a ) = 0

\(\Rightarrow\)- 2( a - 3 ) - a( a - 3 ) = 0

\(\Rightarrow\)( a - 3 )( - 2 - a ) = 0

Từ đó, ta sẽ có :

a - 3 = 0\(\Rightarrow\)a = 3- 2 - a = 0 \(\Rightarrow\)- a = 2\(\Rightarrow\)a = - 2

Vậy : a = 3 hoặc a = - 2 thì a2x3 + 3ax2 - 6x - 2a \(⋮\)x + 1 

Bình luận (0)
 Khách vãng lai đã xóa
NC
30 tháng 10 2019 lúc 10:09

Thực hiện phép chia đa thức cho đa thức:

Ta có: \(a^2x^3+3ax^2-6x-2a=\left(x+1\right)\left[a^2x^2+\left(3a-a^2\right)x+a^2-3a-6\right]-a^2+a+6\)

Đế a2x3 + 3ax2 - 6x - 2a chia hết cho x+1 

=> \(-a^2+a+6=0\)

<=>  ( a - 3 ) ( a + 2 )  = 0

<=>  a  =  3 hoặc a = - 2.

Vậy a = 3 hoặc a = - 2.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
T8
Xem chi tiết
T8
Xem chi tiết
T8
Xem chi tiết
LT
Xem chi tiết
ES
Xem chi tiết
LT
Xem chi tiết