Cho biểu thức :
B = \(\frac{2-x}{x}\)và A = \(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}(x\ne0;x\ne\pm2)\)
a) Tính giá trị của B biết x = - 1
b) Rút gọn A.
c) Cho P = A.B Tìm x biết P =\(\frac{1}{2}\)
d) Tìm x nguyên để P nguyên dương.
Cho \(\frac{a}{c}=\frac{a-b}{b-c}\),\(a\ne0,c\ne0,a-b\ne0,b-c\ne0\).Chứng minh rằng \(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\)
Cho : \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\)với \(a,b,c,d\ne0\)
CMR:\(\frac{a}{b}=\frac{c}{d}\)và \(\frac{a}{b}=\frac{d}{c}\)
a) Tìm a và b. Biết a-b=12 và a.b=15
b) Tìm các số nguyên a và b. Biết a+b=a.b+6
Tìm chữ số a và b biết rằng: 900:( a+ b) = a.b
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab
(a – b)2 = (a + b)2 – 4ab
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a.b = 12.
b) Tính (a + b)2, biết a – b = 20 và a.b = 3.
Cho \(a,b,c\ne0\) và \(a+b+c\ne0\) thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh rằng trong 3 số a, b, c có hai số đối nhau. Từ đó suy ra rằng: \(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\)
cho \(\hept{\begin{cases}b+c\ne0\\c+a\ne0\\b-a\ne0\end{cases}}\)và c < 0, b > 0 thỏa mãn \(\frac{a}{b+c}-\frac{b}{c+a}+\frac{c}{b-a}=0\)CMR a < 0
tìm các số tự nhiên a,b biết\(\frac{a^3+b^3}{2}\)là số nguyên tố và\(a^3+b^3=\left(a+b\right)^2.\left(a^2-a.b+b^2\right)\)