H24

tìm 3 số x,y,z thuộc Z thỏa mãn : (2x+5y+1).(2IxI +y+ x2 +x)=105

ai nhanh mk tick trc 8h15

H24
3 tháng 1 2019 lúc 22:49

\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)

Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.

Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ

\(\Rightarrow\)5y là số chẵn

\(\Rightarrow\)y là số chắn

Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn

\(\Rightarrow\)2|x| là số lẻ

\(\Rightarrow\)x=0

Thay x=0 vào biểu thức ta có: 

\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)

\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)

\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)

\(\Leftrightarrow5y+5y^2+1+y=105\)

\(\Leftrightarrow5y^2+6y+1=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\)

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)

Mà \(x;y\in Z\Rightarrow y=4\)

Vậy x=0;y=4(tmyc)

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết
EB
Xem chi tiết
NA
Xem chi tiết
HH
Xem chi tiết
TH
Xem chi tiết
HY
Xem chi tiết
NL
Xem chi tiết