Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

MN

Tìm 2005 chữ số thập phân đầu tiên của số \(\sqrt{0,99...9}\)(có 2005 chữ số 9)

VH
29 tháng 5 2017 lúc 22:20

ta chứng minh 0,99...9 < \(\sqrt{0,999...9}\)< 0,999...9 (hai số đầu có 2005 số 9, số cuối có 2006 số 9).    (1)

Khi đó 2005 chữ số thập phân đầu tiên của \(\sqrt{0,999...9}\) là 2005 chữ số 9.

thật vậy, dễ dàng chứng minh BĐT đầu bằng cách bình phương hai vế.

ta chứng minh BĐT thứ 2.

với số dạng 0,999....9 (n chữ số 9) ta có 0,999...9 = \(\frac{1}{10^n}\left(10^n-1\right)\)

do đó BĐT thứ 2 sẽ là \(\frac{1}{10^{2005}}\left(10^{2005}-1\right)< \left(\frac{1}{10^{2006}}\left(10^{2006}-1\right)\right)^2\)

phá ngoặc nhân chéo ta được 102007(102005 - 1) < (102006 - 1)2

hay 104012 - 102007 < 104012 - 2. 102006 + 1

hay 8. 102006 + 1 > 0. vậy BĐT thứ 2 đúng hay (1) đúng.

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
LH
Xem chi tiết
CT
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết
TK
Xem chi tiết