LD

Tìm 2 số khác 0 biết rằng tổng, hiệu, tích của chúng tỉ lệ với 5,1,12

Ta có: a+b/5=a−b=ab/12=k

Từ a + b = 5k và a - b = k ta được a = 3k, b = 2k

Thế vào ab = 12k ta được k = 2

Vậy hai số đó là 6 và 4

Bình luận (0)

Gọi 2 số cần tìm là a và b ( điều kiện \(a\ne0;b\ne0\))

Theo bài ra  tổng, hiệu, tích của chúng tỉ lệ với 5,1,12 : 

Ta có :

\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a.b}{12}\left(1\right)\) 

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a+b+a-b}{5+1}=\frac{2a}{6}=\frac{a}{2}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\frac{a}{3}=\frac{a.b}{12}\Rightarrow\frac{a}{a.b}=\frac{3}{12}\Leftrightarrow\frac{1}{b}=\frac{1}{4}\Rightarrow b=4\)

Thay \(b=4\)vào \(\frac{a+b}{5}=\frac{a-b}{1}\)ta được :

\(\frac{a+4}{5}=\frac{a-4}{1}\Leftrightarrow1\left(a+4\right)=5\left(a-4\right)\)

\(\Leftrightarrow a+4=5a-20\Leftrightarrow5a-a=4+20\)

\(\Leftrightarrow4a=24\Rightarrow a=6\)

Vậy 2 số cần tìm là  \(a=6,b=4\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết