3A=3(3+3^2+3^3+...+3^201)
3A=32+33+...+3202
3A-A=(32+33+...+3202)-(3+32+33+...+3201)
2A=3202-3
A=\(\frac{3^{202}-3}{2}\)
Ta có :
\(A=3+3^2+3^3+...............+3^{201}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+..........+\left(3^{199}+3^{200}\right)+3^{201}\)
\(\Rightarrow A=3.\left(1+3\right)+3^3.\left(1+3\right)+..........+3^{199}.\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+.........+3^{199}.4+3^{201}\)
\(\Rightarrow A=4.\left(3+3^3+.........+3^{199}\right)+3^{201}\)
Mà 3 đồng dư với -1 (mod 4)
\(\Rightarrow3^{201}\)đồng dư với 3 (mod 4)
=> A chia 4 dư 1
=> A = 4.k + 1 ( với \(k\in\) N* ) (1)
Còn lại bạn tự tìm khi chia hết cho 25 nha !!