Ta có:
\(99^{99}=99^{98}.99=\left(99^2\right)^{49}.99=\left(...01\right)^{49}.99=\left(...01\right).99=\left(...99\right)\)
\(99^{99^{99}}=99^{\left(...99\right)}=99^{2.k+1}=99^{2.k}.99=\left(99^2\right)^k.99=\left(...01\right)^k.99=\left(...01\right).99=\left(..99\right)\)