Phương pháp:
+) Xác định điểm cực tiểu của đồ thị hàm số.
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm cực tiểu vừa tìm được và kết luận
Cách giải:
Phương pháp:
+) Xác định điểm cực tiểu của đồ thị hàm số.
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm cực tiểu vừa tìm được và kết luận
Cách giải:
Hàm số nào dưới đây có tính chất: Tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y ' ' x = 0 là một đường thẳng song song với trục hoành.
A. y = x 3 − 3 x 2 + x − 2018
B. y = x 3 − 3 x 2 − x − 2018
C. y = x 3 − 3 x 2 + 3 x − 2018
D. y = x 3 − 3 x 2 + 2 x − 2018
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Có bao nhiêu điểm M thuộc đồ thị hàm số f x = x 3 + 1 sao cho tiếp tuyến của đồ thị hàm số f(x) tại M song song với đường thẳng d: y=3x-1.
A. 3
B. 2
C. 0
D. 1
Tiếp tuyến với đồ thị hàm số y = x + 1 2 x - 3 tại điểm có hoành độ x 0 = - 1 có hệ số góc bằng
A. 5
B. - 1 5
C. -5
D. 1 5
Cho hàm số y = x + b a x − 2 a b ≠ − 2 . Biết rằng a v à b là các giá tri thoả mãn tiếp tuyến của đồ thị hàm số tại điểm M 1 ; − 2 song song với đường thẳng d : 3 x + y − 4 = 0. Khi đó giá trị của bằng
A.2
B.0
C.-1
D.1
Cho hàm số y = x + b a x - 2 a b ≠ - 2 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d : 3 x + y - 4 = 0 . Khi đó giá trị của a - 3b bằng
A. -2
B. 4
C. -1
D. 5
Cho hàm số y = x + b a x - 2 a b ≠ - 2 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d : 3 x + y - 4 = 0 . Khi đó giá trị của a - 3 b bằng
A. -2
B. 4
C. -1
D. 5
Tiếp tuyến của đồ thị hàm số y = x - 2 x + 3 tại điểm A(2;0) song song với đường thẳng nào sau đây?
A. x-5y-2=0
B. x-5y+2=0
C. x+5y+2=0
D. x+5y-2=0
Gọi M là giao điểm của đồ thị hàm số y = x x + 1 + 2 m x + m 2 − 3 với trục tung (m là tham số). Xác định giá trị của m sao cho tiếp tuyến tại M của đồ thị hàm số đã cho song song với đường thẳng có phương trình y = 1 4 x + 5 .
A. m = − 3 8
B. m = − 7 8
C. m = 3 7
D. m = 4 7
Hệ số góc của tiếp tuyến với đồ thị hàm số y = ln(x+1) tại điểm có hoành độ x = 2 là
A. 1 3 ln 2
B. 1
C. ln2
D. 1 3