\(I=\int\limits^{\sqrt{3}}_0\dfrac{x^2}{1+x^2}dx=\int\limits^{\sqrt{3}}_0\left(1-\dfrac{1}{1+x^2}\right)dx\)
\(=\left(x-arctan\left(x\right)\right)|^{\sqrt{3}}_0=\sqrt{3}-\dfrac{\pi}{3}\)
\(I=\int\limits^{\sqrt{3}}_0\dfrac{x^2}{1+x^2}dx=\int\limits^{\sqrt{3}}_0\left(1-\dfrac{1}{1+x^2}\right)dx\)
\(=\left(x-arctan\left(x\right)\right)|^{\sqrt{3}}_0=\sqrt{3}-\dfrac{\pi}{3}\)
f(x)^3 + f(x)= x Tính tích phân f(x)dx từ 0 đến 2
Tính tích phân từ -1 đến 0 của x[(x^2)-4]^2019
Tích phân từ -1 đến 0 của x[(x-6)^2019].
Biết tích phân từ 0 đến 1 của 2x+3/2-x = aln2 + b. Thì giá trị của a là ?
Tích phân từ 0 đến 1 xdx/1+√x giúp em với ạ
Cho f(x) +2f'(x) + f"(x) =x^3 + 2x^2 . biết f(0)=f'(0)=1 . tính tích phân cận 0 đến 1 của f(x)
Tính tính phân từ -1 đến 0 của x[(x^2)-5]^2019. Mn giúp e với ạ.
Biết rằng f(1/2)=a ;f(√3/2)=b và x + xf'(x)=2f(x) -4 .tính tích phân cận từ (π/6 đến π/3) của biểu thức[ (sinx^2*cosx + 2sin2x)]/[f(sinx)]^2 theo a và b
Hãy chỉ ra kết quả nào dưới đây đúng :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\sin xdx+\int\limits^{2\pi}_{\dfrac{3\pi}{2}}\sin xdx=0\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sqrt[3]{\sin x}-\sqrt[3]{\cos x}\right)dx=0\)
c) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\ln\dfrac{1-x}{1+x}dx=0\)
d) \(\int\limits^2_0\left(\dfrac{1}{1+x+x^2+x^3}+1\right)dx=0\)