Bài 2: Tích phân

H24

Biết rằng f(1/2)=a ;f(√3/2)=b và x + xf'(x)=2f(x) -4 .tính tích phân cận từ (π/6 đến π/3) của biểu thức[ (sinx^2*cosx + 2sin2x)]/[f(sinx)]^2 theo a và b

NL
30 tháng 3 2019 lúc 0:04

\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{sin^2x.cosx+2sin2x}{\left(f\left(sinx\right)\right)^2}dx=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{\left(sin^2x+4sinx\right).cosx}{\left(f\left(sinx\right)\right)^2}dx\)

Đặt \(sinx=t\Rightarrow cosx.dx=dt;\left\{{}\begin{matrix}x=\frac{\pi}{6}\Rightarrow t=\frac{1}{2}\\x=\frac{\pi}{3}\Rightarrow t=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\frac{\left(t^2+4t\right)}{f^2\left(t\right)}dt=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\frac{\left(x^2+4x\right)}{f^2\left(x\right)}dx\)

Lại có:

\(x+x.f'\left(x\right)=2f\left(x\right)-4\Leftrightarrow x+4=2f\left(x\right)-x.f'\left(x\right)\)

\(\Leftrightarrow x^2+4x=2x.f\left(x\right)-x^2.f'\left(x\right)\)

\(\Leftrightarrow\frac{x^2+4x}{f^2\left(x\right)}=\frac{2x.f\left(x\right)-x^2.f'\left(x\right)}{f^2\left(x\right)}=\left(\frac{x^2}{f\left(x\right)}\right)'\)

\(\Rightarrow I=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\left(\frac{x^2}{f\left(x\right)}\right)'dx=\frac{x^2}{f\left(x\right)}|^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}=\frac{\left(\frac{\sqrt{3}}{2}\right)^2}{f\left(\frac{\sqrt{3}}{2}\right)}-\frac{\left(\frac{1}{2}\right)^2}{f\left(\frac{1}{2}\right)}=\frac{3}{4b}-\frac{1}{4a}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NB
Xem chi tiết
NN
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết