\(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)=2x^{2n}\times x^{1-2n}-2x^{2n}\times3x^{2-2n}+3x^{2n-1}\times x^{1-2n}-3x^{2n-1}\times3x^{2-2n}\)
\(=2x-6x^2+3-3x=3-x-6x^2\)
\(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)=2x^{2n}\times x^{1-2n}-2x^{2n}\times3x^{2-2n}+3x^{2n-1}\times x^{1-2n}-3x^{2n-1}\times3x^{2-2n}\)
\(=2x-6x^2+3-3x=3-x-6x^2\)
Tích \(\left(2.x^{2n}+3.x^{2n-1}\right).\left(x^{1-2n}-3.x^{2-2n}\right)\)\(\left(2.x^{2n}+3.x^{2n-1}\right).\left(x^{1-2n}-3.x^{2-2n}\right)\).
Giup nhs..
Tích (2.x^2n+3.x^2n-1)(x^1-2n-3.x^2-2n) là
Tích (2 . x2n + 3 . x2n-1)(x1-2n - 3 . x2-2n) là ....
Cho A = \(\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{3.\left(2n-3\right)}+\dfrac{1}{1.\left(2n-1\right)}\); B = \(1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\). Tính \(\dfrac{A}{B}\)
Tìm n để
\(n^2+2n-4⋮11\)
\(n^4-2n^3+2n^2-2n+1⋮n^4+1\)
\(n^3-n^2+2n+7⋮n^2+1\)
cho
A=\(\dfrac{1}{1\left(2n-1\right)}+\dfrac{1}{3\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right)3}+\dfrac{1}{\left(2n-1\right)1}\)
B=\(1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\)
tính \(\dfrac{A}{B}\)
Rút gọn : M = \(\dfrac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
Thực hiện phép tính
(a+b)(a2n-1-a2n-2b+a2n-3b2-...-b2n-1)
Tìm số nguyên n:
a) \(n^2+2n-4⋮11\)
b) \(2n^3+n^2+7n+1⋮2n-1\)
c) \(n^3-2⋮n-2\)
d) \(n^3-3n^2-3n-1⋮n^2+n+1\)
e) \(n^4-2n^3+2n^2-2n+1⋮n^4-1\)
g) \(n^3-n^2+2n+7⋮n^2+1\)