Violympic toán 8

HN

Rút gọn : M = \(\dfrac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

AH
21 tháng 7 2018 lúc 13:58

Lời giải:

Ta có:
\(n^3+2n^2-1=(n^3+n^2)+(n^2-1)\)

\(=n^2(n+1)+(n-1)(n+1)=(n+1)(n^2+n-1)\)

Và:

\(n^3+2n^2+2n+1=n^3+n^2+(n^2+2n+1)\)

\(=n^2(n+1)+(n+1)^2=(n+1)(n^2+n+1)\)

Do đó:
\(M=\frac{(n+1)(n^2+n-1)}{(n+1)(n^2+n+1)}=\frac{n^2+n-1}{n^2+n+1}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BT
Xem chi tiết
NH
Xem chi tiết
DS
Xem chi tiết
TT
Xem chi tiết
BT
Xem chi tiết
VB
Xem chi tiết
VK
Xem chi tiết
MM
Xem chi tiết