(x2-1)(x2+x+1)(x2-x+1)
=(x2-1)[(x2+1)2-x2]
=(x2-1)[x4+2x2+1-x2]
=(x2-1)(x4+x2+1)
=(x2)3-1
=x6-1
( x2 - 1 )( x2 + x + 1 )( x2 - x + 1 )
= ( x2 - 1 )[ ( x2 + 1 ) + x ][ ( x2 + 1 ) - x ]
= ( x2 - 1 )[ ( x2 + 1 )2 - x2 ]
= ( x2 - 1 )( x4 + 2x2 + 1 - x2 )
= ( x2 - 1 )( x4 + x2 + 1 )
= x6 + x4 + x2 - x4 - x2 - 1
= x6 - 1
\(\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=\left(x^2-1\right)\left(x^4+x^2+1\right)=x^6-1\)
\(=\left(x^2-1^2\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
\(=\left(x^2-1^2\right)\left[\left(x^2+1\right)^2-x^2\right]\)
\(=\left(x^2-1^2\right)\left(x^4+2x^2+1-x^2\right)\)
\(=\left(x^2-1^2\right)\left(x^4+x^2+1\right)\)
\(=\left(x^2-1^2\right)\left[\left(x^2\right)^2+2\cdot x^2\cdot1+1^2\right]\)
\(=\left(x^2\right)^3-1^3\)
\(=x^6-1\)
\(\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^2-1\right)\left[\left(x^2+1\right)+x\right]\left[\left(x^2+1\right)-x\right]\)
\(=\left(x^2-1\right)\left[\left(x^2+1\right)^2-x^2\right]\)
\(=\left(x^2-1\right)\left[\left(x^4+2x^2+1\right)-x^2\right]\)
\(=\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=x^6-1\)