\(d,-\dfrac{5}{12}+\dfrac{3}{4}=-\dfrac{5}{12}+\dfrac{9}{12}=\dfrac{4}{12}=\dfrac{1}{3}\)
\(e,\dfrac{5}{7}.\dfrac{25}{2}-\dfrac{5}{7}.\dfrac{11}{2}=\dfrac{5}{7}.\left(\dfrac{25}{2}-\dfrac{11}{2}\right)=\dfrac{5}{7}.7=5\)
\(d,-\dfrac{5}{12}+\dfrac{3}{4}=-\dfrac{5}{12}+\dfrac{9}{12}=\dfrac{4}{12}=\dfrac{1}{3}\)
\(e,\dfrac{5}{7}.\dfrac{25}{2}-\dfrac{5}{7}.\dfrac{11}{2}=\dfrac{5}{7}.\left(\dfrac{25}{2}-\dfrac{11}{2}\right)=\dfrac{5}{7}.7=5\)
Bài 2 : Thực hiện phép tính
\(a,\dfrac{-7}{2}+\dfrac{3}{4}-\dfrac{17}{12}\)
\(b,-\dfrac{1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
Bài 1 : Thực hiện phép tính
a/ \(\dfrac{7}{6}\) - \(\dfrac{13}{12}\) + \(\dfrac{3}{4}\)
b/ 1 \(\dfrac{1}{2}\) . \(\dfrac{-4}{5}\) + \(\dfrac{3}{10}\)
c/ \(\dfrac{25}{9}\) . \(\dfrac{3}{10}\) + ( \(\dfrac{-5}{3}\) )\(^2\) . \(\dfrac{7}{10}\) + | \(\dfrac{-25}{3}\) |
Bài 2 : Tìm x , biết
a/ x - \(\dfrac{5}{6}\) = \(\dfrac{1}{4}\)
b/ \(\dfrac{26}{x}\) = \(\dfrac{-13}{-15}\)
( Cần gấp )
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
Bài 1: Thực hiện phép tính sau:
\(a,\dfrac{9}{18}-\dfrac{-7}{12}+\dfrac{13}{32}\)
\(b,\dfrac{5}{-8}+\dfrac{14}{25}-\dfrac{6}{10}\)
Bài 1 : Thực hiện phép tính
a) \(\dfrac{19}{12}\) + | \(\dfrac{-5}{2}\) | + ( \(\dfrac{3}{2}\) )2
b) \(\dfrac{2}{11}\) . \(\dfrac{16}{9}\) - \(\dfrac{2}{11}\) . \(\dfrac{7}{9}\)
Bài 2 : Tìm x , biết
\(\dfrac{a}{8}\) = \(\dfrac{b}{3}\) và a - b = 55
Bài 1: Thực hiện phép tính sau:
\(c,\dfrac{12}{5}:\dfrac{16}{15}\)
\(d,\dfrac{9}{8}:\dfrac{6}{5}\)
Thực hiện phép tính:
\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
Thực hiện phép tính:\(\dfrac{0.375-0.3+\dfrac{3}{11}+\dfrac{3}{12}}{-0.53+0.5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1.5+1-0.75}{2.5+\dfrac{5}{3}-1.25}\)
Bài 1: thực hiện phép tính:
\(\dfrac{2}{5}\)-\(\dfrac{1}{7}\).\(\dfrac{1}{2}\)