\(\left(\frac{1}{2}\right)^5.2^5-\left(\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\right)\)
\(=\frac{1^5}{2^5}.2^5-\left(\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\right)\)
\(=\frac{1^5.2^5}{2^5}-\left(\frac{2020.2021}{2019.2020.2021}-\frac{2019.2021}{2019.2020.2021}+\frac{2019.2020}{2019.2020.2021}\right)\)
\(=1^5-\left(\frac{2020.2021-2019.2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{\left(2020-2019\right).2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1.2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020.\left(1+2019\right)}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020.2020}{2019.2020.2021}\right)\)
\(=1-\frac{1+2020}{2019.2021}\)
\(=1-\frac{2021}{2019.2021}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)
Chúc bạn học tốt