\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\times\frac{x^2+8x+16}{32}\)
ĐKXĐ : \(x\ne\pm4\)
\(=\left(\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\times\frac{\left(x+4\right)^2}{32}\)
\(=\left(\frac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}\right)\times\frac{\left(x+4\right)^2}{32}\)
\(=\frac{32}{\left(x-4\right)\left(x+4\right)}\times\frac{\left(x+4\right)^2}{32}\)
\(=\frac{x+4}{x-4}\)
\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(=\left(\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(=\frac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}.\frac{\left(x+4\right)^2}{32}=\frac{32}{\left(x-4\right)\left(x+4\right)}.\frac{\left(x+4\right)^2}{32}=\frac{x+4}{x-4}\)