a) (m⁴ - 2m²n² + n⁴) : (m² - n²)
= (m² - n²)² : (m² - n²)
= m² - n²
b) (25x² - 81y²) : (5x + 9y)
= [(5x + 9y)(5x - 9y)] : (5x + 9y)
= 5x - 9y
c) (8x³ + 1) : (4x² - 2x + 1)
= [(2x + 1)(4x² - 2x + 1)] : (4x² - 2x + 1)
= 2x + 1
a) (m⁴ - 2m²n² + n⁴) : (m² - n²)
= (m² - n²)² : (m² - n²)
= m² - n²
b) (25x² - 81y²) : (5x + 9y)
= [(5x + 9y)(5x - 9y)] : (5x + 9y)
= 5x - 9y
c) (8x³ + 1) : (4x² - 2x + 1)
= [(2x + 1)(4x² - 2x + 1)] : (4x² - 2x + 1)
= 2x + 1
Giải pt
a)căn x^2-4x+4=x+3
a)căn 9x^2+12x+4=4x
a)căn x^2-8x+16=4-x
a)căn 9x^2-6x+1-5x=2
a)căn 25-10x+x^2-2x=1
a)căn 25x^2-30x+9=x-1
a)căn x^2-6x+9-x-5=0
a)2x^2-căn 9x^2-6x+1=-5
b)căn x+5=căn 2x
b)căn 2x-1=căn x-1
b)căn 2x+5=căn 1-x
b)căn x^2-x=căn 3-x
b)căn 3x+1=căn 4x-3
b)căn x^2-x=3x-5
b)căn 2x^2-3=căn 4x-3
b)căn x^2-x-6=căn x-3
Giúp mình với ạ
1. PTĐT thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+5x+1\)
2. CMR; ∀n ∈ Z thì:
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
thực hiện phép tính
\(\frac{\sqrt{m^3}+4\sqrt{mn^2}-4\sqrt{m^2n}}{\sqrt{m^2n}-2\sqrt{mn^2}},m>0,n>o\)
thực hiện phép tính
\(\frac{\sqrt{m^3}+4\sqrt{mn^2}-4\sqrt{m^2n}}{\sqrt{m^2n}-2\sqrt{mn^2}},m>0,n>0\)
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
Cho các số thực không âm m , n , p thoả mãn điều kiện m + 2n +3p = 1 .
Chứng minh rằng ít nhất môt trong hai phương trình có nghiệm :
\(4x^{2}-4(2m+1)x+4m^{2}+192mnp+1=0\)
\(4x^2-4\left(2n+1\right)x+4n^2+96mnp+1=0\)Giải các phương trình sau:
a) \(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
b) \(2x^4-5x^3-9x^2+11x+4=0\)
c) \(8x^3+4x^2+2x-3=0\)
d) \(\frac{10x^4}{\left(1+x^2\right)^2}-\frac{3x^2}{1+x^2}-1=0\)
e) \(3x^4+4x^3-27x^2+8x+12=0\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải phương trình
a) \(\frac{4}{20-6x-2x^2}\)+ \(\frac{x^2+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
b)\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2-10x}+10=\frac{x+25}{2x^2-50}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)