TT

Thu gọn:

\(A=\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}-\sqrt{3-2\sqrt{2}}\)

có thể  bị sai đề ( sai thì các bạn giúp mình sửa lại nhé )

TL
5 tháng 9 2015 lúc 4:43

Đặt y= \(\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)

=> y\(\left(\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\right)^2\)\(\left(\sqrt{7+\sqrt{5}}\right)^2+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}+\left(\sqrt{7-\sqrt{5}}\right)^2\)

=\(7+\sqrt{5}+2\sqrt{7^2-\left(\sqrt{5}\right)^2}+7-\sqrt{5}\)\(14+2\sqrt{44}\)\(14+4\sqrt{11}\)\(2\left(7+2\sqrt{11}\right)\)

=> y= \(\sqrt{2\left(7+2\sqrt{11}\right)}\)

=> A = \(\frac{\sqrt{2\left(7+2\sqrt{11}\right)}}{\sqrt{7+2\sqrt{11}}}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-\left|\sqrt{2}-1\right|=\sqrt{2}-\left(\sqrt{2}-1\right)\left(do\sqrt{2}>1\right)=\sqrt{2}-\sqrt{2}+1=0+1=1\)

Bình luận (0)

Các câu hỏi tương tự
CA
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
SS
Xem chi tiết
IS
Xem chi tiết
KN
Xem chi tiết
NL
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết