Bài 4: Tính chất ba đường trung tuyến của tam giác

SK

Gọi G là trọng tâm của tam giác ABC. Vẽ điểm D sao cho G là trung điểm của AD. Chứng minh rằng :

a) Các cạnh của tam giác BGD bằng \(\dfrac{2}{3}\) các đường trung tuyến của tam giác ABC

b) Các đường trung tuyến của tam giác BGD bằng một nửa các cạnh của tam giác ABC

 

LV
8 tháng 7 2017 lúc 9:21

A N C D M E B P G F

a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD

\(\Delta BMD=\Delta CMG\left(c.g.c\right)\)

\(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)

Ta có \(BG=\dfrac{2}{3}BN\) (2)

\(GD=AG=\dfrac{2}{3}AM\) (3)

Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)

b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
PN
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết