Cho hình phẳng (H) giới hạn bởi các đường y = ln x , y = 0 , x = 1 v à x = k k > 1 . Gọi V k là thể tích khối tròn xoay thu được khi quay hình (H) quanh trục Ox. Biết rằng V k = π , hãy chọn khẳng định đúng?
A. 3 < k < 4
B. 1 < k < 2
C. 2 < k < 3
D. 4 < k < 5
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y =sinx.cosx, trục tung, trục hoành và đường thẳng x =π/2 . Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox.
A. V =π/16.
B. V = π 2 16
C. V = π 2 + π 16
D. V = π 2 4
Cho hình thang cong (H) giới hạn bởi các đường y = ln x + 1 , trục hoành và đường thẳng x = e − 1. Tính thể tích khối tròn xoay thu được khi quay hình H quanh trục Ox .
A. e − 2.
B. 2 π
C. π . e .
D. π . e − 2 .
Tính thể tích của vật thể tròn xoay tạo bởi khi quay quanh trục hoành Ox hình phẳng giới hạn bởi các đường thẳng y = lnx , y = 0 , x = 1 , x = e .
A. e - 2
B. e + 2
C. π e + 2 .
D. π ( e − 2 ) .
Cho hình phẳng (H) giới hạn bởi đường cong y = ln x , trục hoành, đường thẳng x = 1 và x = k k > 1 . Gọi V k là thể tích khối tròn xoay thu được khi quay hình (H) quay quanh trục Ox. Biết rằng V k = π . Hãy chọn khẳng định đúng?
A. 3 < k < 4
B. 1 < k < 2
C. 2 < k < 3
D. 4 < k < 5
Cho hình phẳng (H) giới hạn bởi các đường y= x lnx;y =0;x= e. Tính thể tích V của khối tròn xoay tạo thành khi cho hình (H) quay quanh trục Ox
A. V = 1 27 ( 5 e 3 - 2 )
B. V = π 27 ( 5 e 3 + 2 )
C. V = π 27 ( 5 e 3 - 2 )
D. V = 1 27 ( 5 e 3 + 2 )
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường thẳng y = cos x , y = 0 , x = 0 , x = π quay quanh trục Ox.
A. π 3
B. π 2 2
C. π 2
D. π 2 3
Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = x ln x , x = e và trục hoành là
A. V = π 2 e 3 + 1 9
B. V = π 2 e 3 - 1 9
C. V = π 4 e 3 + 1 9
D. V = π 4 e 3 - 1 9
Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = x ln x , x = e và trục hoành là
A. V = π ( 2 e 3 + 1 ) 9
B. V = π ( 2 e 3 - 1 ) 9
C. V = π ( 4 e 3 + 1 ) 9
D. V = π ( 4 e 3 - 1 ) 9