Đáp án D
V = 1 3 S d . S H
S d = S A B C = 1 2 a . a 3 2 = a 2 3 4
S H = S C 2 − H C 2 = a 2 − 2 3 . a 3 2 2 = a 2 3
⇒ V = 1 3 . a 2 3 4 . a 2 3 = a 3 2 12 .
Đáp án D
V = 1 3 S d . S H
S d = S A B C = 1 2 a . a 3 2 = a 2 3 4
S H = S C 2 − H C 2 = a 2 − 2 3 . a 3 2 2 = a 2 3
⇒ V = 1 3 . a 2 3 4 . a 2 3 = a 3 2 12 .
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Tính thể tích V của khối tứ diện đều ABCD cạnh bằng a .
A. a 3 2 12
B. 2 a 3 3 3
C. a 3 8
D. a 3 3 12
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;0), B(2;2;2), C(-2;3;1) và đường thẳng d : x - 1 2 = y + 2 - 1 = z - 3 2 . Tìm điểm M thuộc d để thể tích V của tứ diện MABC bằng 3.
A. M 1 - 15 2 ; 9 4 ; - 11 2 , M 2 - 3 2 ; - 3 4 ; 1 2
B. M 1 - 3 5 ; - 3 4 ; 1 2 , M 2 - 15 2 ; 9 4 ; 11 2
C. M 1 3 2 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
D. M 1 3 5 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABCD
A. V = a 3 2 12
B. V = a 3 11 24
C. V = a 3 3 4
D. V = a 3 8
Cho tứ diện đều cạnh a Tính thể tích V của khối tứ diện đều đó
A. V = a 3 3 12
B. V = a 3 4
C. V = a 3 2 12
D. V = a 3 3 8
Cho khối tứ diện ABCD có ABC và BCD là các tam giác đều cạnh a. Góc giữa hai mặt phẳng (ABC) và (BCD) bằng 60 ° . Tính thể tích V của khối tứ diện ABCD theo a:
A. V = a 3 8
B. V = a 3 3 16
C. V = a 3 2 8
D. V = a 3 2 12
Các trung điểm của các cạnh của một tứ diện đều cạnh a là các đỉnh của khối đa diện đều. Tính thể tích V của khối đa diện đều đó.
A. V = a 3 3 12
B. V = a 3 2 12
C. V = a 3 2 24
D. V = a 3 3 16
Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G 1 , G 2 , G 3 , G 4 là trọng tâm của bốn mặt của tứ diện ABCD. Tính thể tích V của khối tứ diện G 1 G 2 G 3 G 4 .
A. V = 2 4
B. 2 18
C. V = 2 32
D. V = 2 12
Cho khối tứ diện đều ABCD cạnh a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng (ABD) cắt cạnh AB tại điểm F. Tính thể tích V của khối tứ diện AECF.
A. V = 2 a 3 30 .
B. V = 2 a 3 60 .
C. V = 2 a 3 40 .
D. V = 2 a 3 15 .