DD

\(\text{Rút gọn:}\)

\(a.\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)

\(b.\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\)
 

OP
3 tháng 9 2016 lúc 19:41

Câu B tương tự nha :

 \(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2z-2y\right)\)

\(=\left(x-y+z\right)^2-2\left(z-y\right)\left(x-y+z\right)+\left(z-y\right)^2\)

\(=\left(x-y+z-z+y\right)^2\)

\(=x^2\)

Bình luận (0)
HH
3 tháng 9 2016 lúc 19:55

câu b nha  ( a + b )( a ^ 2 - ab + b ^ 2 ) -( a - b )( a ^ 2 + ab + b ^ 2 ) = (a^3 - a^2 * b + ab^2 + ba^2 - ab^2 + b^3)  - (a^3 + a^2 * b + ab^2  - a^2 * b - ab^2 - b^3) = (a^3 + b^3 ) - (a^3 - b^3) = 2b^3 

Bình luận (0)

Các câu hỏi tương tự
LU
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
LU
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
TU
Xem chi tiết
NT
Xem chi tiết