MT

\(\text{GPT: }\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)

TT
5 tháng 10 2015 lúc 19:02

ĐKXĐ :  -1 <= x <= 3 

XH : \(\left(-x^2+4x+12\right)-\left(x^2+2x+3\right)=2x+9>0\)

=> VT > 0 

VÌ -1 <=x <=3  => VT = \(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}.\sqrt{3-x}\)

Áp dụng BĐT \(\left(ab-cd\right)^2\le\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có :

\(VT^2=\left(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}\sqrt{3-x}\right)^2\ge\left(x+2-x-1\right)\left(6-x-3+x\right)=1.3=3\)

=> VT \(\ge\sqrt{3}\) dấu bằng xảy ra khi \(\left(x+2\right)\left(6-x\right)=\left(x+1\right)\left(3-x\right)\) <=> x = 0 

VP = \(\sqrt{3}-x^2\le\sqrt{3}\)

Dấu bằng xảy ra khi x = 0 

Để VT bằng VP => x = 0 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
KS
Xem chi tiết
SS
Xem chi tiết
DT
Xem chi tiết
HN
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết