MT

\(\text{Cho }\sqrt{55-6\sqrt{6}}=a+b\sqrt{6}\left(a;b\in Z\right)\)

Tính a + b

TL
1 tháng 10 2015 lúc 14:53

C1: Bình phương 2 vế ta có: \(55-6\sqrt{6}=\left(a+b\sqrt{6}\right)^2\)

<=> \(55-6\sqrt{6}=a^2 +6b^2+2ab\sqrt{6}\)

=>  a2 + 6b2 = 55 và 2ab = - 6

=> a2 + 6b2 = 55   (1)   và ab = -3  => a = -3/b (2)

thế (2) vào (1) ta được : \(\left(-\frac{3}{b}\right)^2+6b^2=55\) => \(9+6b^4=55b^2\)

=> 6b4 - 55b2 + 9 = 0 => 6b4 - 54b- b+ 9 =0 <=> 6b2.(b2 - 9) - (b2 - 9) = 0 <=> (6b2 - 1).(b- 9 ) = 0 

<=> b= 1/6 (Loại; vì b nguyên )  hoặc b= 9 

+) b2 = 9 => a= 1 => a = 1 hoặc - 1 ; b = 3 hoặc - 3

Do \(a+b\sqrt{6}\) > 0  và a; b trái dấu nên a =  -1; b = 3 => a+ b = 2

Vậy a +  b  = 2

C2\(\sqrt{55-6\sqrt{6}}=\sqrt{\left(3\sqrt{6}\right)^2-2.3\sqrt{6}.1+1}=\sqrt{\left(3\sqrt{6}-1\right)^2}\)

\(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)

=> a = -1; b = 3 => a + b = 2

Bình luận (0)