bạn có thể vào mục câu hỏi tương tự
http://olm.vn/hoi-dap/question/162856.html
bạn có thể vào mục câu hỏi tương tự
http://olm.vn/hoi-dap/question/162856.html
Cho a,b,c dương thỏa mãn điều kiện \(a^2b^2c^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge a+b+c+ab+bc+ca+3\)
Tìm GTNN của biểu thức:
\(P=\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}\)
1) Cho các số a,b,c thỏa mãn: a+b+c=3;\(\frac{1}{2a^2}+\frac{1}{2b^2}+\frac{1}{2c^2}+\frac{3}{2}=\frac{\sqrt{2b-1}}{a}+\frac{\sqrt{2c-1}}{b}+\frac{\sqrt{2a-1}}{c}\)
Tính M=\(\frac{\left(a+1\right)^2}{ab+1}+\frac{\left(b+1\right)^2}{bc+1}+\frac{\left(c+1\right)^2}{ca+1}\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Cho a,b,c>0 thỏa mãn: a+b+c=1. Tìm GTNN của: \(P=14.\left(a^2+b^2+c^2\right)+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
cho a,b,c không âm thỏa mãn:
\(\sqrt{a}+b+\sqrt{c}=\sqrt{3}\) và\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)+\left(c+2b\right)}=3\)
Tính giá trị của biểu thức \(M=\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
giúp mk vs thanks trước nha
Cho các số thực dương a,b,c thoả mãn: \(a^2+b^2+c^2\ge\left(a+b+c\right)\sqrt{ab+bc+ca}\)
Tìm GTNN của biểu thức: \(P=a\left(a-2b+2\right)+b\left(b-2c+2\right)+c\left(c-2a+2\right)+\frac{1}{abc}\)
Cho 3 số thưc a,b,c thỏa mãn
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2016\)
Tìm GTNN của
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
Cho a,b,c là các số thực thỏa mãn 0 < a,b,c < 1 và ab + bc + ca = 1
Tìm GTNN \(P=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)