3n+8 chia hết cho n+1
=> 3(n+1) +5 chia hết cho n+1
=> 5 chia hết cho n+1
=> n+1=1 hoặc n+1=5
=> n=0 hoặc n=4
(3n + 8) chia hết cho n + 1 suy ra n + n + n + 8 chia hết cho n + 1
suy ra (n+1) + (n+1) + (n+1) + 5 chia hết cho n+1 (1)
mà n +1 chia hết cho n+1 (2)
Từ (1) (2) suy ra 5 chia hết cho n+1
suy ra hoặc n+1= 1, hoặc n+1=5
suy ra hoặc n=0, hoặc n=4
3n+8 chia hết cho n+1
3n+3+5 chia hết cho n+1
3(n+1)+5 chia hết cho n+1
Vì 3(n+1) chia hết cho n+1 nên 5 chia hết cho n+1
=> n+1 thuộc Ư(5)={1;5}
=> n thuộc {0;4}.