Bạn tính theo Pytago ý, trung tuyến cũng là đường cao.
=> Tính được trung tuyến là \(\frac{3}{4}a^2\) .
Bạn tính theo Pytago ý, trung tuyến cũng là đường cao.
=> Tính được trung tuyến là \(\frac{3}{4}a^2\) .
Tam giác ABC đều có cạnh là a. Tính độ dài 3 đuờng trung tuyến theo a.
cho tam giác ABC cân tại A, M là trung điểm của BC. CMR: a, tam giác AMB= tam giác AMC. b, tính độ dài AM biết AB=10cm; BC=12cm c, kẻ đường trung tuyến CE cắt AM tại D. gọi I là điểm cách đều 3 cạnh của tam giác ABC. CMR: I;D;M thẳng hàng.
Chứng minh rằng: Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó.
Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông.
Sử dụng bài 55 để chứng minh rằng: Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó.
Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông.
Tam giác ABC cân tại A, có 2 cạnh bên là 5 cm, cạnh còn lại là 4cm. Kẻ đường trung tuyến AM từ đỉnh A xuống cạnh BC.
â) Tính độ dài đường trung tuyến AM
b) Gọi G là trọng tâm tam giác ABC. Tính AG, MG.
Tam giác ABC cân có hai cạnh bên là 5 cm, cạnh còn lại là 4 cm .Vẽ đường trung tuyến AM từ đỉnh A đến cạnh BC.
A) Tính độ dài đường trung tuyến AM
B) Gọi G là trọng tâm của tam giác ABC .Tính AG, MG
Cho tam giác ABC đều cạnh bằng 10 cm có phân giác AD và đường trung tuyến BE. Gọi I là giao điểm của BE và AD. Độ dài đoạn thẳng DI là:
A. 75 cm
B. 2 75 3 c m
C. 75 3 c m
D. 25 cm
56. Sử dụng bài 55 để chứng minh rằng: Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó.
Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông
Cho tam giác ABC có độ dài các cạnh AB, BC, CA là ba số tự nhiên liên tiếp tăng dần. Kẻ đường cao AH, đường trung tuyến AM. Tính độ dài HM.