tìm tọa độ của các vectơ
Tam giác ABC có G là trọng tâm . M là điểm bất kì trong tam giác . GM cắt AB, AC ,BC tại C' , B' , A' . Chung minh \(\dfrac{MA'}{GA'}+\dfrac{MB'}{GB'}+\dfrac{MC'}{GC'}=3\)
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
Cho tam giác ABC vuông tại A, có độ dài các cạnh của tam giác thoả mãn hệ thức:
BC2 =AC2 +AB.AC, hãy tính số đo góc ABC.
Tam giác ABC có G là trọng tâm . M là điểm bất kì trong tam giác . GM cắt AB, AC ,BC tại C' , B' , A' . Chung minh
\(\dfrac{MA'}{GA'}\)+\(\dfrac{MB'}{GB'}\)+\(\dfrac{MC'}{GC'}\)=3
cho tam giác ABC cân tại A. \(\widehat{BAC}\)=120\(^0\), AB=a. tính độ dài cạnh BC theo a
cho a,b,c là độ dài 3 cạnh của tam giác vuông có cạnh huyền c. tìm GTNN của \(P=\dfrac{a^2\left(b+c\right)+b^2\left(c+a\right)}{abc}\)
cho tam giác ABC vuông tại A đường cao AH. tính độ dài các cạnh AC,AH.
Biết AB=15cm, Hc=14cm