Cho parabol: \(y=\dfrac{-x^2}{4}\) và đường thẳng y=mx+n. Xác định các hệ số m và n để đường thẳng đi qua điểm (1;2) và tiếp xúc với parabol. Tìm tọa độ tiếp điểm, vẽ đồ thị của parabol và đường thẳng trên cùng 1 hệ trục tọa độ
(Làm hộ mình câu b nha)
Cho các hàm số: \(y=x^2\) và y=-x+2.
a)Xác định tọa độ các giao điểm A, B của đồ thị hai hàm số đã cho và tọa độ trung điểm I của AB
b) Xác định tọa độ của điểm M thuộc DTHS: \(y=x^2\) sao cho tam giác ABM cân tại M
Cho các hàm số: \(y=x^2\) và y=-x+2. Xác định tọa độ các giao điểm A, B của đồ thị hai hàm số đã cho và tọa độ trung điểm I của AB biết A có hoành độ dương
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=2x+m;\left(d_2\right):y=\left(m^2+1\right)x-1\) (Với m là tham số)
a) Tìm m để d1 cắt Ox ở A, cắt Oy ở B (A và B khác O) sao cho \(AB=2\sqrt{5}\)
b) Tìm tọa độ giao điểm C của d1 và d2 khi m=2
cho (p) y=1/2x^2 và (d) y=m+x
a, vẽ (p)
b,tìm tọa độ giao điểm của(p) (d)
tam giác ABC đều cạnh a,dựng hình vuông BCMN.Gọi G là trọng tâm tam giác ABC.Tính theo a độ dài vectơ u=vectơ GA+vectơ GB+vectơ GM+vecto GN
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=(a-2)x+b đi qua điểm M(-2;-1) và song song với đường thẳng y=x+2. Tìm các số a và b