PB

Tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. Chứng minh rằng ∠(BAC) = 90o

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

CT
8 tháng 8 2017 lúc 3:13

Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC

Mà AM = 1/2 BC (gt) nên: AM = BM = MC.

Tam giác AMB có AM = MB nên ΔAMB cân tại M

Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)

Tam giác AMC có AM = MC nên ΔAMC cân tại M

Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)

Trong ΔABC ta có:

∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)

Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o

Hay ∠(BAC) = 90o.

Vậy ΔABC vuông tại A.

Bình luận (0)

Các câu hỏi tương tự
BY
Xem chi tiết
CB
Xem chi tiết
T5
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
MS
Xem chi tiết