Tam giác ABC có cạnh BC lớn nhất. Trên cạnh BC lấy các điểm D và E sao cho BD = BA ; CE = CA. Tia phân giác của góc B cắt AE tại M; tia phân giác của góc C cắt AD tại N. Chứng minh rằng tia phân giác của góc BAC vuông góc với MN
tam giác abc có cạnh bc là cạnh lớn nhất .trên cạnh bc lấy các điểm d và e sao cho bd=ba và ce=ca .tia phân giác của góc b cắt ae tại m tia phân giác của góc c cắt ad tại n .chứng minh rằng tia phân giác của góc bac vuông góc với mn
Tam giác ABC có cạnh BC là cạnh lớn nhất. Trên cạnh BC lấy các điểm D và E sao cho BD=BA và CE=CA. Tia phân giác của góc B cắt AE tại M; tia phân giác của góc C cắt AD tại N.
Chứng minh rằng tia phân giác góc BAC vuông góc với MN.
Cho Tam giác ABC có AB=AC và BC<AB, gọi M là trung điểm BC.
a) Chứng minh tam giác ABM= tam giác ACM. Từ đó suy ra AM là tia phân giác góc BAC
b) Trên cạnh AB lấy D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy E sao cho AD=CE. Chứng minh góc BCE = góc ADC
d) Chứng minh BA=BE
Cho Tam giác ABC có AB=AC và BC<AB, gọi M là trung điểm BC.
a) Chứng minh tam giác ABM= tam giác ACM. Từ đó suy ra AM là tia phân giác góc BAC
b) Trên cạnh AB lấy D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy E sao cho AD=CE. Chứng minh góc BCE = góc ADC
d) Chứng minh BA=BE
Cho tam giác ABC có AB bằng AC và BC bé hơn AB, gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM bằng tam giác ACM. Từ đó suy ra AM là tia phân giác của góc BAC
b) Trên cạnh AB lấy điểm D sao cho CB bằng CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD bằng CE. Chứng minh: góc BCE bằng góc ADC
d) Chứng minh: BA bằng BE
Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC. Trên cạnh BC lấy điểm N sao cho BN = BA, trên cạnh BC lấy điểm M sao cho CM = CA. Tia phân giác góc ABC cắt AM tại I và cắt AN tại D, tia phân giác góc ACB cắt AN tại K và AM tại E. Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD vuông góc với AN, CE vuông góc với AM
b. BD song song với MK
c. IK = OA
Cho tam giác ABC có AB = AC và BC < AB, M là trung điểm BC.
a) Chứng minh AM là tia phân giác góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Tia phân giác góc BCD cắt BD tại N. Chứng minh CN vuông góc với BD.
c) Trên tia đối tia CA lấy điểm E sao cho AD = CE. Chứng minh ˆ B C E = ˆ A D C .
d) Chứng minh BA = BE.
Cho tam giác ABC cân tại A có BC < AB, gọi M là trung điểm của BC.
a) Chứng minh ABM = ACM từ đó suy ra AM là tia phân giác của góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Kẻ tia phân giác của góc BCD, tia này cắt
cạnh BD tại N. Chứng minh CN BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh BCEADC
d) Chứng minh: BA = BE.